
Cyclicity of (Z/pn)∗ for an odd prime p.

Theorem. (Gauss.) Let p be an odd prime. Then for all n > 0, (Z/pn)∗, the group of units in Z/pn,

is cyclic.

Proof. We saw in class that (Z/p)∗ is cyclic. Let x be a generator, i.e., an element of order p − 1. We

show first that either x or x + p has order |(Z/p2)∗| = p(p − 1) in (Z/p2)∗—so that (Z/p2)∗ is cyclic.

If x has order a in (Z/p2)∗, then a divides |(Z/p2)∗| = p(p− 1). Moreover, xa ≡ 1 (mod p), and so p− 1

divides a. Thus a = p(p − 1) or a = (p − 1). In the first case we are done. In the second case, the same

reasoning shows that (x + p) has order p(p − 1) or (p − 1). But since p2 doesn’t divide pxp−2, the binomial

expansion gives

(x + p)p−1 ≡ xp−1 + (p − 1)pxp−2 ≡ 1 − pxp−2 6≡ 1 (mod p2),

and so x + p must have order p(p − 1) (and similarly, so does x + bp for 0 < b < p).

Next we prove for n ≥ 2 that if z is a generator of (Z/pn)∗ then z is a generator of (Z/pn+1)∗. Since

we have seen that there is a generator z (= x or x + p) when n = 2, it will follow by induction that z is a

generator of (Z/pn)∗ for all n ≥ 2, whence the desired conclusion.

Lemma. For any y and n ≥ 1,

yp ≡ 1 (mod pn+1) ⇐⇒ y ≡ 1 (mod pn).

Proof. If either yp ≡ 1 (mod pn+1) or y ≡ 1 (mod pn) then since y ≡ yp (mod p), therefore y ≡ 1

(mod p), whence p divides yp−1 + yp−2 + · · · + y + 1 = (yp − 1)/(y − 1). So if y − 1 is divisible by pn then

yp − 1 is divisible by pn+1.

The converse is proved by induction. The case n = 1 has been shown in the preceding paragraph. So

suppose n ≥ 1, and that if yp − 1 is divisible by pn+1 then y − 1 is divisible by pn (inductive hypothesis).

To go from n to n + 1, suppose yp − 1 is divisible by pn+2, hence by pn+1. Then by assumption, y − 1 is

divisible by pn, that is, y = 1 + kpn for some k; and the binomial expansion gives

yp = 1 + pkpn + (p(p − 1)/2)k2p2n + · · · ≡ 1 + kpn+1 (mod pn+2),

Since yp − 1 is divisible by pn+2 therefore k is divisible by p, and so y − 1 = kpn is divisible by pn+1.

Returning to the main proof, suppose that z has order |(Z/pn)∗| = pn−1(p − 1) in (Z/pn)∗. Arguing as

above in the case n = 2, we see that the order of z in (Z/pn+1)∗ is either pn(p−1)—in which case z is indeed

a generator of (Z/pn+1)∗—or pn−1(p − 1). In the second case, the Lemma, with y = zp
n−2(p−1), would give

that zp
n−2(p−1) ≡ 1 (mod pn), contradicting the assumption on the order of z. Thus the second case cannot

occur, and the theorem is proved.

Remarks. (a) The Lemma fails for p = 2. For example, 72 ≡ 1 (mod 16), but 7 6≡ 1 (mod 8).

Where does the proof break down in this case?

(b) The numbers 19 and 31 generate (Z/7)∗, but don’t generate (Z/49)∗.

However, in less than 20 minutes on hardy, Mathematica calculates that if p is one of the first ten million

primes, then the smallest positive generator of (Z/p)∗ does generate (Z/p2)∗, with the single exception

p = 40487, for which 5 generates the units mod p but not mod p2.

Can you explain this? (I can’t.)


